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C A N C E R

Targeting nucleotide metabolism as the nexus of viral 
infections, cancer, and the immune response
Yarden Ariav1, James H Ch’ng2, Heather R. Christofk3, Noga Ron-Harel4*, Ayelet Erez1*

Virus-infected cells and cancers share metabolic commonalities that stem from their insatiable need to replicate 
while evading the host immune system. These similarities include hijacking signaling mechanisms that induce 
metabolic rewiring in the host to up-regulate nucleotide metabolism and, in parallel, suppress the immune re-
sponse. In both cancer and viral infections, the host immune cells and, specifically, lymphocytes augment nucleo-
tide synthesis to support their own proliferation and effector functions. Consequently, established treatment 
modalities targeting nucleotide metabolism against cancers and virally infected cells may result in restricted im-
mune response. Encouragingly, following the introduction of immunotherapy against cancers, multiple studies 
improved our understanding for improving antigen presentation to the immune system. We propose here that 
understanding the immune consequences of targeting nucleotide metabolism against cancers may be harnessed 
to optimize therapy against viral infections.

INTRODUCTION
All living cells require nucleotides as building blocks for deoxyribo-
nucleic acid (DNA) and ribonucleic acid (RNA) synthesis for replica-
tion, transcription, and translation of genetic information, enabling 
cellular biomass increase. To ensure the accuracy of these processes, 
nucleotide metabolism is tightly regulated at all levels to maintain 
constant pools of pyrimidines—cytosine, uracil, and thymine (C, U, 
and T, respectively) and purines—adenine and guanine (A and G, 
respectively). Cancer cells and virus-infected cells share a metabolic 
dependency on nucleotide synthesis to support their unrestrained 
proliferation (1, 2). From the disease standpoint, a favorable out-
come of uncontrolled proliferation lies in inducing mutations that 
further promote disease virulence and evolvability and enable sur-
vival in continuously changing environments (3, 4). Indeed, different 
drugs targeting nucleotide metabolism in either cancer or viral dis-
eases constitute a shared therapeutic strategy to restrict replication.

The benefit from inhibiting nucleotide synthesis goes beyond re-
straining proliferation. In cancer, drugs that disrupt the balance of nu-
cleotide pools can generate mutations that affect antigen presentation 
and, consequently, the immune response against the disease (5, 6). In 
addition, inhibition of purine synthesis can directly alleviate immune 
suppression, as secreted purines directly bind inhibitory receptors on 
immune cells (7, 8). On the other hand, targeting nucleotide metabo-
lism could negatively affect the response of the host immune system. 
An early and essential step in the adaptive immune response against 
cancers and virally infected cells involves the rapid proliferation of 
lymphocytes (9), which will be disrupted by nucleotide deficiency. 
Therefore, any therapeutic strategy that targets nucleotide metabo-
lism may potentially exert secondary effects on immune cells.

Despite the general characteristics discussed above, it is impor-
tant to note that different viruses can impose distinct metabolic 

alterations of nucleotide metabolism in the infected cells. Further-
more, in cancer, metabolic heterogeneity is found among cells, loca-
tions, and at different stages of the same tumor. Here, we focus on the 
shared commonalities in nucleotide metabolism between cancer and 
virally infected cells and on the cross-talk it generates with immune 
cells along disease courses and during therapy. We highlight the ad-
vantages this cross-talk provides for disease progression, as well as 
the vulnerabilities it introduces that may constitute targets for therapy.

NUCLEOTIDE METABOLISM IN CANCERS AND VIRALLY 
INFECTED CELLS
Reprogramming of nucleotide metabolism to increase synthesis is 
regulated in cancers and virus-infected cells by similar signaling and 
metabolic pathways. In cancers, mutations and genomic aberrations 
in pro-growth and biosynthetic pathways are selected for promoting 
nucleotide synthesis (10). Virus-infected cells use other strategies, 
such as protein-protein interactions, to turn on the same biosynthetic 
machinery within the host cell. In both diseases, inhibition of tumor 
suppressors and activation of oncogenes, together with changes in 
expression of metabolic enzymes, lead to a shared outcome of in-
creased nucleotide levels.

Rewiring of nucleotide metabolism via regulation 
of cell signaling
Several major signaling pathways and transcription regulators are 
commonly altered in cancers and virus-infected cells to increase 
nucleotide synthesis. These include MYC, RAS, P53, and mamma-
lian target of rapamycin (mTOR). As the metabolic rewiring induced 
by these pathways have been extensively reviewed elsewhere (11, 12), 
here we will only briefly describe the most relevant metabolic alter-
ations that augment nucleotide metabolism (Fig. 1).

MYC is considered a “master regulator” of cell proliferation, 
growth, and metabolism (10, 13) and is overexpressed and/or acti-
vated by oncogenic or epigenetic events in most human cancers (14). 
MYC directly binds and enhances expression of bottleneck enzymes 
in nucleotide biosynthesis, including CAD (the trifunctional en-
zyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, 
and dihydroorotase), thymidylate synthase, and IMPDH (inosine 
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monophosphate dehydrogenase) (15–18). MYC further supports nu-
cleotide synthesis by augmenting glycolysis and glutaminolysis to 
supply carbon and nitrogen precursors and by promoting the alterna-
tive splicing isoform of pyruvate kinase, PKM2, over PKM1. PKM2 
increases the availability of glycolytic intermediates for branching 
the anabolic pathways: the pentose phosphate pathway (PPP) and 
serine synthesis (19, 20), which generate precursors for nucleotide 
synthesis. In virus-infected cells, MYC can be activated by various 
strategies, such as protein-protein interaction, and by induction of 
its transcription. For example, adenovirus-encoded protein E4ORF1 
translocates to the nucleus, where it binds MYC and enhances 
its binding to metabolic genes (21). In addition, hepatitis C virus 
(HCV) enhances MYC transcription by activating other signaling 
pathways such as AKT and -catenin (22).

RAS oncogene promotes nucleotide synthesis in multiple ways, 
which include MYC activation (12, 23), and by activation of extracel-
lular signal–regulated kinase, which phosphorylates and stimulates 
the purine synthetic enzyme phosphoribosylformylglycinamidine 
synthase (24) and the pyrimidine synthetic enzyme CAD (25). Vi-
ruses also use RAS signaling to promote proliferation. In human 
herpesvirus–infected cells, RAS activation is induced by interaction 
of viral glycoproteins and cellular receptors, as reviewed in (26). Sim-
ilarly, the HCV generates replication complexes that are composed of 
virally-encoded proteins and Ras-GTPase–activating protein-binding 
protein 1 (27).

Cancer and virally infected cells further promote nucleotide synthe-
sis by inhibiting signaling of tumor suppressors such as p53. In cancers, 
mutated p53, or its loss of function, reprograms cell metabolism to sup-
port growth, proliferation, and macromolecule synthesis. In DNA 
virus–infected cells, specific inactivating proteins or viral regulatory 
factors form complexes to inactivate p53 (28–30). In addition to its 
direct effects on metabolic pathways such as glycolysis and the salvage 
nucleotide pathway, p53 is among the plethora of genes, nutrients, and 
stress and growth signals that regulate the mTOR pathway, which is a 
critical regulator of mammalian metabolism (31). Loss of p53 activates 
mTOR complex 1 (mTORC1) to stimulate de novo pyrimidine and 
purine synthesis through activation of CAD enzyme and induction of 
one-carbon metabolism, which uses serine and glycine to generate 
one-carbon units for thymidine and purine synthesis (32–34). Similarly 
to MYC and mutated p53, mTORC1 stimulates glycolysis, and the PPP 
thus increases supply of precursors for nucleotide production (35). 
Activation of mTOR signaling has been demonstrated in multiple 
cancers (36) and following viral infections (37) and is mediated by 
various oncogenic alterations and virally induced regulatory pro-
teins, respectively.

Rewiring of nucleotide synthesis via a direct regulation 
of metabolic enzymes
Mutations and genomic aberrations in metabolic enzymes are se-
lected in cancer to promote proliferation and increase nucleotide 
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Fig. 1. Shared signaling and metabolic rewiring between virus-infected cells, cancers, and lymphocytes. Virus-infected cells, cancers, and lymphocytes rewire cell 
metabolism to promote anabolism in general and that of nucleic acids specifically as building blocks for their enhanced proliferation. In addition to the “Warburg effect” 
that enhances glycolysis, the scheme depicts the metabolic reprogramming that is promoted by major signaling pathways such as p53, MYC, mitogen-activated protein 
kinase (MAPK), and mTOR to increase nucleotide synthesis (red arrows) for carbon (C) and nitrogen (N) utilization. UCD, urea cycle dysregulation; SLC, solute carrier; THF, 
tetrahydrofolate; TCA, tricarboxylic acid, MTp53, mutated p53; and OXA, oxaloacetate.



Ariav et al., Sci. Adv. 2021; 7 : eabg6165     19 May 2021

S C I E N C E  A D V A N C E S  |  R E V I E W

3 of 8

synthesis. These include mutations that drive overexpression of en-
zymes that promote production of precursors for nucleotide synthe-
sis, such as the glycolytic enzymes: hexokinase, phosphofructokinase 
and glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase 
(38–41). In some cancers, such as melanoma and subtypes of breast 
and lung carcinomas, an amplification of a region on chromosome 
1p increases the expression of phosphoglycerate dehydrogenase, the 
committed step in serine biosynthesis, leading to enhancement of 
the tetrahydrofolate cycle and purine synthesis (42, 43). In addition, 
amplifications of CAD enzyme that catalyzes the initiating step in 
pyrimidine synthesis and of several enzymes in the purinosome, the 
multienzyme complex that catalyzes purine synthesis, have been found 
in different cancers to directly increase nucleotide levels (44, 45). 
Similarly, some virus-infected cells induce nucleotide synthesis by 
directly encoding for metabolic enzymes. For example, the herpes 
simplex virus 1 (HSV1) encodes thymidine kinase, ribonucleotide 
reductase, dUTPase, and uracil-DNA glycosylase (46), all of which 
increase pyrimidine production.

Mechanisms used by cancers and viruses for increasing substrate 
levels necessary for nucleotide synthesis include not only the induc-
tion of anabolic enzymes but also interference with catabolic path-
ways. One example is the rewiring of the urea cycle (UC), the main 
pathway for disposal of excess nitrogen. Altered expression of UC 
enzymes is detected in many tumors (5). For example, overexpres-
sion of the UC enzyme CPS1, as seen in lung cancer, increases the 
availability of carbamoyl phosphate for pyrimidine synthesis (47). 
In addition, down-regulation of the UC enzyme argininosuccinate 
synthase 1 (ASS1), as seen in multiple cancers [e.g., osteosarcoma, 
melanoma, and mesothelioma (48, 49)], increases the availability of 
its substrate aspartate, thus facilitating pyrimidine synthesis and can-
cer proliferation (50). Aspartate is also essential for asparagine acti-
vation of mTOR-dependent nucleotide synthesis (51, 52). Likewise, 
down-regulation of ASS1 enhances viral genome replication and pro-
duction of infectious HSV1 (53). Interestingly, such changes may 
also affect the immune response. For example, lymphocytic chorio-
meningitis virus has been demonstrated to repress the transcription 
of the UC enzymes OTC (Ornithine transcarbamylase) and ASS1 in 
the liver, consequently leading to decreased arginine and increased 
ornithine concentrations in the circulation, which suppress virus- 
specific cytotoxic T cell responses (54).

These studies highlight different mechanisms by which viruses 
and cancers rewire the host cellular and systemic metabolism to 
provide their insatiable need for nucleotides. Consequently, target-
ing nucleotide metabolism is an established treatment approach to 
restrain proliferation in both diseases.

TARGETING NUCLEOTIDE METABOLISM AGAINST CANCERS 
AND VIRAL INFECTIONS
Over the years, different therapeutic strategies have been used against 
cancers and virus-infected cells. Interestingly, while targeting nucle-
otide synthesis induces similar effects on cancers and virus-infected 
cells, attempting at hampering nucleotide metabolism by targeting 
metabolic master regulators can generate differential effects against 
each disease. For example, the mTOR inhibitors (Rapalogs), which 
are widely used against various cancers (55, 56), have variable ef-
fects against different viruses and have been shown to diminish cy-
tomegalovirus and severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) replication (57, 58) and, on the other hand, to facilitate 

influenza infection and polyomavirus replication (59–61). The vari-
ability in response of different viruses to mTOR inhibitors could 
result from the dependence of the virus on mTOR for replication as 
well as from the level of effect the inhibitor has on the antiviral im-
mune response. In contrast, similar benefits have been demonstrated 
against both diseases when using nucleotide analogs and agents that 
directly inhibit the enzymes involved in nucleotide metabolism. 
Surprisingly, despite the shared mechanisms of action, there are no 
drug agents that are approved against both cancers and viral in-
fections (tables S1 and S2).

Nucleotide analog treatment modality
One main strategy to halt cellular replication uses modified purine 
and pyrimidine nucleosides that terminate DNA or RNA polymerase 
activity. In these synthetic nucleosides, the deoxyribose moiety is re-
placed with nonfunctional modifications such as azide or hydrogen, 
which inhibit elongation of the DNA or RNA strands. Purine and 
pyrimidine analogs used in cancer treatment are summarized in 
table S1, together with their labeled indications and mechanisms 
of action. Most of these drugs are incorporated into the DNA and 
inhibit the activity of DNA polymerase (62). New generations of 
nucleosides are more sophisticated and display additional metabolic 
consequences in their cellular cytotoxicity. For example, in addition 
to blocking RNA synthesis, the adenosine analog 8-amino-adenosine 
causes an energy crisis and induces cell death by decreasing the in-
tracellular concentrations of adenosine triphosphate (ATP) (table S1) 
(63). Nucleosides are efficient drugs; however, cancers can develop 
mechanisms that overcome the metabolic hurdles they impose. For ex-
ample, gemcitabine is a pyrimidine prodrug analog of deoxycytidine 
that has been approved for the treatment of non–small cell lung can-
cer, pancreatic cancer, bladder cancer, and breast cancer (64). How-
ever, it was recently demonstrated that tumor-infiltrating activated 
macrophages synthesize and release a spectrum of pyrimidine nucleo-
sides including deoxycytidine that are consumed by the cancer cells 
(65). These nucleosides directly compete with gemcitabine, hinder-
ing its efficiency as a chemotherapy.
Nucleoside and nucleotide analogs represent one of the largest 
classes of small-molecule antiviral drugs (summarized in table S2). 
The mechanisms of action of these drugs include lethal mutagene-
sis, specific or nonspecific chain termination, and inhibition of nucle-
otide biosynthesis (66, 67). Indeed, for the SARS-CoV-2, one of the 
trialed antiviral drugs used is remdesivir, a prodrug of a nucleotide 
analog that is intracellularly metabolized to an ATP analog, which 
inhibits the activity of viral RNA polymerases (68). Another exam-
ple of a nucleoside analog used as viral therapy is acyclovir and its 
related drugs: valacyclovir, penciclovir, and famciclovir, used against 
infections with HSV-1, HSV-2 and varicella zoster virus. Ganciclovir 
and its related drug valganciclovir are additional nucleoside analogs 
used against members of the family Herpesviridae (69). The mech-
anism of action of these drugs requires phosphorylation by a virally 
encoded enzyme that induces chain termination only in infected 
cells. Ribavirin, a Food and Drug Administration (FDA)–approved 
guanosine analog, is standard for care against several viruses, includ-
ing respiratory syncytial virus and HCV (70). Although its mecha-
nism of action is a matter of debate, several possibilities have been 
proposed, including depletion of guanine nucleotides through inhi-
bition of IMPDH (71). Intriguingly, ribavirin’s antiviral effect against 
HCV is associated with induction of transition mutations in the vi-
ral genome, resulting in the generation of noninfectious virions (72).
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Inhibition of metabolic enzymes involved in nucleotide 
metabolism
Direct inhibition of enzymes involved in DNA and RNA synthesis 
is another known treatment strategy against both cancers and vi-
ral infections. In fact, one of the first FDA-approved molecules 
for cancer treatment was the purine inhibitor 6-mercaptopurine 
(6-MP). 6-MP inhibits the first enzyme of de novo purine synthesis, 
5-phosphoribosyl-1-pyrophosphatase (73), and the purine salvage 
enzyme, hypoxanthine-guanine phosphoribosyltransferase (74). 
Merimepodib, which inhibits IMPDH, an enzyme catalyzing de novo 
synthesis of guanosine nucleotides, has been demonstrated to sup-
press replication of a variety of RNA viruses, including SARS-CoV-2 
replication in vitro (75, 76).

Inhibitors of pyrimidine biosynthesis currently used for cancer 
treatment include 5-fluorouracil, a thymidylate synthase inhibitor, 
and methotrexate, which inhibits dihydrofolate reductase and causes 
a drop in cellular levels of thymidine (77, 78). Not surprisingly, ef-
forts have been made to target CAD and dihydroorotate dehydro-
genase (DHODH) pyrimidine synthetic proteins (79, 80). While 
potent CAD inhibitors are still lacking, inhibitors of DHODH, such 
as brequinar sodium, are currently being tested in clinical trials as 
cancer therapy for acute myeloid leukemia (81). DHODH inhibitors 
have also been tested in different models of viral infections (82). The 
repression in viral growth induced by these inhibitors was attributed 
to enhanced innate immune response in reaction to pyrimidine 
deprivation (83).

Targeting a specific nucleotide pathway for the synthesis of either 
purines or pyrimidines can generate a nucleotide pool imbalance by 
decreasing the levels of one pool relative to the other. Since the ratio 
between the two pools is tightly regulated, induced imbalance can sub-
sequently cause genotoxic stress and increase mutagenesis (84, 85). 
While prompting mutations can increase fitness and survival of can-
cers and virally infected cells, high mutation number will ultimately 
generate more neoantigens that can improve the response of 
immune cells (86).

NUCLEOTIDE METABOLISM REGULATES THE HOST 
IMMUNE SYSTEM
The rationale and benefit from targeting nucleotide metabolism to 
inhibit replication of tumor cells or viruses during infection are 
clear. However, we should not overlook the potential for consequen-
tial deleterious effects on the immune response against both diseases, 
specifically that of T lymphocytes. T lymphocytes are the cellular arm 
of the adaptive immune system and can be divided into different sub-
populations with distinct functions: CD8+ cytotoxic T cells kill cells 
that express foreign antigens including cells infected with virus and 
tumor cells. CD4+ T helper cells regulate the function of other im-
mune cells, including CD8+ cytotoxic T cells. Upon activation, T cells 
induce anabolic metabolism to support rapid growth, proliferation, 
effector molecule production, and differentiation using the same sig-
naling and metabolic pathways induced to support proliferation in 
cancer cells and virally infected cells (87). Signals received through the 
T cell receptor activate MYC and mTOR to induce transcription of 
multiple metabolic enzymes (88). In addition, wild-type P53 is down- 
regulated in lymphocytes by its regulator mouse double minute 2 
(MDM2) (Fig. 2) (89). Consequently, glucose uptake and glycolysis are 
induced, with increased serine biosynthesis and increased metabolic 
flux through the PPP, producing five-carbon sugars for nucleotide 

synthesis (88). In parallel to a large increase in aerobic glycolysis, T cell 
activation induces a robust and highly synchronized program of mito-
chondrial biogenesis (90, 91), giving rise to one-carbon metabolism 
that uses serine to generate glycine and one-carbon units for de novo 
purine biosynthesis (91). Mitochondrial respiration further supports 
nucleotide synthesis and proliferation through production of aspar-
tate, a precursor for CAD enzyme (Fig. 1) (92, 93). Thus, T cells en-
gage in nucleotide metabolism to support their growth, proliferation, 
and redox balance using the same pathways “hijacked” by tumors and 
virally infected cells (Fig. 2). Not surprisingly, similar to the anti-
cancer and antiviral therapies, drugs that inhibit nucleotide synthesis 
have long been used to treat inflammatory autoimmune diseases such 
as rheumatoid arthritis, Crohn’s disease, and psoriasis and to prevent 
host versus graft disease following organ transplantation (table S3).

Fig. 2. p53: Engaging a common pathway by different mechanisms. Nucleotide 
synthesis is induced in T cells, cancers, and virally infected cells through engage-
ment of the same signaling pathways but by different mechanisms, as nicely illus-
trated in the case of p53. Cancer cells select for loss of wild-type p53 activity via 
mutations or loss of heterozygosity (LOH). Virus-infected cells inhibit p53 through 
protein-protein interaction. In T lymphocytes, MDM2 facilitates p53 degradation. 
This figure was generated using https://biorender.com/.

Fig. 3. Modulating nucleotide metabolism to favor pyrimidine synthesis can 
increase the host immune response against viral attack and cancer. Inducing a 
high pyrimidine-to-purine ratio may promote the immune response against can-
cer and virus-infected cells by inducing genotoxic stress, decreasing immune sup-
pression, and augmenting the antigens’ immunogenicity, all contributing to virally 
infected and cancer cells’ death.

https://biorender.com/
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Inhibition of nucleotide synthesis as a treatment for cancer and 
viral infections is not all bad for T cells and, under certain circum-
stances, could even promote a protective immune response. Can-
cers and virally infected cells actively generate an immunosuppressive 
microenvironment by secreting purines, especially adenosine, into 
the extracellular space (8, 94). By engaging with adenosine receptors 
that are expressed on most immune cells, adenosine halts immune 
cell differentiation and maturation, induces the expression of check-
point molecules, such as programmed cell death protein 1 and cyto-
toxic T lymphocyte–associated protein-4, and interferes with secretion 
of chemokines and cytokines (7). Accordingly, in tumors, drugs tar-
geting the adenosine pathway were shown to convert an immuno-
suppressive microenvironment to a more immuno-permissive one 
and to reduce metastasis and resistance to therapy (95). Such drugs 
are currently undergoing their first clinical trials in humans, both as 
single agents and in combination with other immune therapies (96).

Following the introduction of immunotherapy against cancers, 
multiple studies advanced our knowledge for improving the immune 
response via regulating antigen presentation by the cancer cells (97). 
One such potential strategy to increase the presentation of more im-
munogenic antigens on the cell surface is by promoting the presen-
tation of more hydrophobic neoantigens (98, 99). Since presented 
antigens are continuously translated from the cellular mRNAs, mod-
ulating nucleotide metabolism can regulate the antigens’ properties. 
Along these lines, we found that inducing a high pyrimidine-to- 
purine ratio in different cancers promotes the generation of a specific 
mutation signature, leading to the production of more hydrophobic, 
and therefore more immunogenic, neoantigens (5). Furthermore, 
as a proof of concept, we demonstrated that mizoribine, an inhib-
itor of IMPDH and consequently of purine synthesis, augmented 
pyrimidine-to-purine ratio and improved the response to immuno-
therapy in previously nonresponsive tumors (6). Of note, to avoid 
the potential immunosuppressive effect of mizoribine (6), it was 
given to cancer cells before treatment with immunotherapy. The 
resultant beneficial outcome exemplified by tumor growth restric-
tion suggests the rationale that sequential drug regimens can opti-
mize therapeutic consequences. We hence propose that better 
understanding of the secondary effects of drugs that target nucleo-
tide synthesis on immune cells will minimize the inhibitory effect 
on T cells, enhance immunogenicity of infected or transformed 
cells, and thus improve existing therapies against viral infections 
and cancers (84, 85).

OUTLOOK
Nucleotide metabolism provides cancers and viruses with means to 
proliferate and evade the immune system; hence, it is a well-established 
therapeutic target against both diseases. Although the therapeutic 
strategy is shared between the two diseases, there are currently no drugs 
that are commonly used against both. These days, immunotherapy 
advances our knowledge regarding potential recruitment of the im-
mune response as therapy against cancer. The similar cross-talks 
between cancers and virally-infected cells with the immune system 
via nucleotide metabolism offer an opportunity to take advantage 
of this shared vulnerability and modulate nucleotide metabolism in 
a way that would boost the immune response and benefit therapy. 
On the basis of recent insights, modulating nucleotide metabolism, 
for example, by generating an imbalance that favors pyrimidine 
synthesis, may potentially improve the immune response, may 

reduce tumor-induced immune suppression, and may increase 
genotoxic stress, consequently leading to cell death (Fig. 3).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/21/eabg6165/DC1
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