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Opinion
The factors that determine brain aging remain a mystery.
Do brain aging and memory loss reflect processes occur-
ring only within the brain? Here, we present a novel
view, linking aging of adaptive immunity to brain senes-
cence and specifically to spatial memory deterioration.
Inborn immune deficiency, in addition to sudden impo-
sition of immune malfunction in young animals, results
in cognitive impairment. As a corollary, immune restor-
ation at adulthood or in the elderly results in a reversal of
memory loss. These results, together with the known
deterioration of adaptive immunity in the elderly,
suggest that memory loss does not solely reflect chrono-
logical age; rather, it is an outcome of the gap between
an increasing demand for maintenance (age-related risk-
factor accumulation) and the reduced ability of the
immune system to meet these needs.

Introduction
Brain aging is manifested by a deterioration of many
aspects of cognitive function, including the reduced speed
of information processing, reduced working memory
capacity and impaired spatialmemory ability. Behavioural
indications of brain aging (i.e. memory deterioration) are
often already evident by middle age in clinically healthy
individuals. Finding ways to restore or even to prevent
brain senescence would have a profound effect on the
quality of life of these individuals and would reduce their
burden on society. To treat or prevent memory loss, mech-
anisms that contribute to maintenance of brain plasticity
and that deteriorate with age but are amenable to manip-
ulation should be identified.

As part of our attempts over the last decade to under-
stand the dialogue between the immune system and the
nervous system under pathological conditions, we showed
that the adaptive immune system has unique potential to
contribute to the maintenance of the brain functional
plasticity. This potential is part of a broad role attributed
by us to the immune system and is one of the manifes-
tations of the function of the immune system in ‘protective
autoimmunity’ [1] (Box 1). ‘Protective autoimmunity’
suggests that a network of cellular immune responses,
involving CD4+ T cells that recognize self-proteins residing
in the brain, provide a mechanism that can sense and
respond to various deviations from central nervous system
(CNS) homeostasis, thus maintaining its integrity and
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assisting in its restoration [2–8]. In this article, we suggest
amodel that attributes to age-related immune compromise
a role in age-related brain dysfunction and, specifically, in
hippocampus-dependent memory deterioration. According
to this view, during old age, when the need formaintenance
increases, the senescent immune system fails to provide
the support required. The individual onset and rate of age-
related memory impairments are determined both by the
baseline of cognitive ability (i.e. intelligence) and the rate
of cognitive aging [9]. We suggest that the latter is deter-
mined by the subject’s immune potential at old age, in
addition to other known factors including early education
and lifelong dietary habits [10–12]. How and where the
dialogue between the immune system and the brain takes
place, and the prospect of circumventing age-related mem-
ory loss by boosting and/or rejuvenating the immune sys-
tem, are the topics of this article.

Aging: an outcome of impaired maintenance of brain
integrity
Complex biological systems are under constant regulation,
including maintenance and repair mechanisms. Such
mechanisms include various stress responses, antioxida-
tive mechanisms, removal and turnover of defective cel-
lular components and nucleic acid repair. Aging is often
viewed as the final manifestation of unsuccessful mainten-
ance (according to the ‘homeodynamics’ [13] and the ‘dis-
posable soma’ theories of aging [14]; Box 2) at the
molecular, cellular, tissue and system levels.

Like cells in other organ systems, cells in the CNS
experience increased levels of oxidative stress, perturbed
energy homeostasis, DNA damage and accumulation of
non-degradable molecules [15,16]. In fact, expression of
stress-associated genes is often seen in aged brains [15]. A
variety of mechanisms were identified that contribute to
this age-related damage accumulation and the resulting
brain dysfunction, among which are perturbation of cellu-
lar free Ca2+ concentrations and elevation of glutamate-
mediated toxicity (for reviews, see Refs [15,16]). The
accumulation of these risk factors, together with the
reduction in proteolytic systems [17] and in DNA repair
mechanisms [18] that are associated with aging, results in
a detrimental effect on almost every aspect of cell function
[15,19]. Focusing on loss of maintenance as the primary
cause for brain aging, rather than on massive loss of
neurons [15], leaves open a window for optimism that
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Box 1. Immunity to self: a physiological mechanism to

protect the healthy and damaged CNS

Our concept of immune-dependent brain maintenance [3,5] is

supported by a large amount of evidence accumulated in the past

decade, showing that peripheral immune cells, via their direct or

indirect interaction with resident microglia and infiltrating blood-

borne monocytes, contribute to cell renewal, improve neuronal

survival and facilitate restoration of CNS homeostasis under

neurodegenerative conditions [7]. The most damage after an acute

injury to the mammalian CNS is caused by the gradual secondary

degeneration of neurons adjacent to the site of injury. The primary

cell death causes an increase in the concentration of toxic

physiological substances, such as glutamate and free radicals,

creating a hostile environment for neighbouring neurons. The same

is true for neurodegenerative diseases in which the primary risk

factors include endogenous self compounds that accumulate

extracellularly at non-physiological levels. The cells that mediate

the neuroprotective immune activity are CD4+ T lymphocytes

specific for CNS antigens [1,32,127]. Our studies have shown that

such autoimmune T cells locally control resident microglia and

boost in a temporal and spatial controlled way infiltrating blood-

borne monocytes, helping them to acquire a phenotype that enables

them to combat degenerative conditions [48,51,71,79,128]. The

activated microglia and macrophages do this by removing dead

cells and cell debris, buffering toxic compounds (such as glutamate

and reactive oxygen species) and producing growth factors needed

for cell survival and renewal, without producing inflammation-

associated compounds such as tumor necrosis factor-a, nitric oxide

and cyclooxygenase 2 [48,50,68]. In addition, the autoimmune T

cells, themselves, upon encountering their specific antigens pre-

sented by antigen presenting cells at the lesion site, can produce

protective compounds such as cytokines, growth factors and

neurotransmitters.

Box 2. Aging as the consequence of unsuccessful

maintenance

Life’s stability is constantly threatened by a wide array of internal

and external stressors, and, under these circumstances, active

maintenance is required to protect the integrity of the organism. It

is widely accepted that aging is caused by the gradual, lifelong

accumulation of a wide variety of molecular and cellular damage.

This understanding forms the basis of various theories aimed at

explaining the aging process and answering the fundamental

question of ‘why do we age?’ The ‘disposable soma’ theory, first

raised by Kirkwood and colleagues in the 1970s [129], was based on

asking how the organism should optimally allocate its metabolic

resources between the maintenance and repair of its soma and the

other functions that it must carry out, to maximize its Darwinian

fitness (i.e. thermogenesis, reproduction). ‘Disposable soma’ sug-

gests that somatic maintenance needs only to be good enough to

maintain the organism in adequate physiological condition for as

long as it has a reasonable chance to survive in the wild. According

to this theory, aging results from accumulation of unrepaired

cellular damage through evolved limitations in somatic mainte-

nance and repair functions, and longevity is therefore controlled

primarily through genes that regulate the levels of such somatic

maintenance and repair functions [14,130]. Another theory, which

makes similar assumptions, is the ‘homeodynamics’ theory of

aging. The concept of homeodynamics accounts for the fact that

the internal milieu of complex biological systems is not permanently

fixed, is not in equilibrium (as opposed to homeostasis) and is

subject to dynamic regulation and interaction among various levels

of organization. The homeodynamic machinery consists of different

biological pathways such as stress responses, antioxidant mechan-

isms, protein repair and chaperone functions, removal and turnover

of defective proteins, and so on. Aging is seen as the failure of the

homeodynamic network owing to progressive accumulation of

random damage [13,131].
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perhaps there is a room for overcoming maintenance loss,
thereby arresting the aging of the brain.

The immune system: a key player in CNS repair and
maintenance
The body’s major system of tissue maintenance and repair
is the immune system. Traditionally, it was believed that
the primary role of the immune system is host defence
against intruders; thus, the immune response requires the
ability to discriminate between self and nonself, to enable a
response against any foreign intruders without attacking
self tissues [20,21]. Over the years, opinions differed as to
whether and why discrimination between self and nonself
is actually needed (see Refs [22,23] and others). We
suggested that discrimination between self and nonself
is required not to completely eliminate the self-recognizing
T cells but to ensure a controlled selection of such anti-self
T cells (autoreactive T cells) [24]. We demonstrated that
such autoreactive (CD4+) T cells are essential for fighting
against internal risk factors, as opposed to mediating
immunity to nonself, which eliminates external invaders
[25]. The constructive role of the anti-self response was
first documented after injury. Specifically, we found that
CD4+ T cells recognizing CNS-specific antigens are needed
for tissue repair after CNS axotomy [1]. These findings
formed the basis for our concept of ‘protective autoimmu-
nity’ (Box 1). Over the years, other studies using various
animal models led to results that support this finding [26–

31].
In searching for the underlying mechanism by which T

cells support CNS recovery, our group discovered that the
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involvement of self-specific T cells in CNS neuroprotection
after CNS insults [32] is part of their much broader phys-
iological role in maintaining plasticity in the healthy CNS
[3]. It was proposed that CNS-specific T cells support
various aspects of brain function and plasticity at all times,
and that their remedial effect under pathological con-
ditions is an extension of the same homeostatic role.
Indeed, we found that immune-deficient mice are impaired
not only in their ability to cope with acute damage to the
CNS [33–36] but also in various aspects of normal brain
function and plasticity, including neural cell renewal (neu-
rogenesis) [3], growth factor production [3], cognitive abil-
ity [3,5,37] and mental stability [6,38–40] (Figure 1).
Importantly, the aging brain is characterized by a decrease
in some of these aspects of brain plasticity (as will be
discussed later), findings which, in part, created the basis
of our current working paradigm.

Neural cell renewal (neurogenesis) and immunity to self

Hippocampal granular cells are among the few neuronal
cells that undergo neurogenesis in the healthy adult CNS.
Immature neurons from the subgranular zone migrate a
short distance into the dentate gyrus granular cell layer,
where they develop processes and mature into functioning
integrated neurons [41]. Nevertheless, the potential
importance of these newly formed neurons to hippo-
campus-dependent cognitive ability is still a matter of
debate [42]. We found that mice deficient in T cells, and
particularly in CNS-specific T cells, have reduced rates of
progenitor cell proliferation, leading to an overall decrease



Figure 1. T-cell-mediated maintenance of brain function. There are many parallels between the way factors external to the brain affect brain tissue homeostasis and the way

these same factors affect immune potency; whereas aging and mental instability promote damage accumulation in the brain and inhibit T cell immunity, life-style elements

including exercise and healthy nutrition contribute to brain tissue homeostasis and increase immune potency. Several mechanisms were identified by which elevation in T

cell immunity might contribute to healthy brain function, and specifically to BDNF production, neurogenesis and spatial memory performance. T cells can either secrete

BDNF themselves or activate microglia in a manner that promotes BDNF secretion, which is dependent on IGF-1 and tumor necrosis factor (TNF)-a production. BDNF

supports both hippocampal neurogenesis and spatial memory capacity. BDNF-independent mechanisms for T-cell-dependent regulation of neurogenesis might also

potentially exist. Similarly, T-cell-dependent presynaptic plasticity, exemplified by expression of Syt10 and Cplx2, suggests an additional mechanism for T-cell-dependent

maintenance of brain plasticity that could be mediated by BDNF or by another T-cell-secreted factor. Under physiological conditions, T cells contribute to brain maintenance

by supporting microglia and astrocytes and helping them contain small deviations from homeostasis. Under pathological conditions, such as acute injury and

neurodegenerative diseases, T cells act in recruiting blood-borne monocytes, which in turn migrate to the brain and act together with resident microglia in restoring

homeostasis. Boosting the immune system in time of need, and specifically during aging, would attenuate brain tissue damage accumulation, partially through these

immune mechanisms. ‘?’ denote a possible pathway, which requires further research.
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in the number of new, mature neurons [3]. Yet, T-cell-
dependent neurogenesis ismost pronounced at early adult-
hood [43]. In the elderly, there is a substantial reduction in
neurogenesis [44]. According to our hypothesis, the
reduced neurogenesis that occurs with aging might be
an outcome of, among other factors, reduced immune-
based maintenance or an overwhelming local inflamma-
tory response that occurs in the elderly.

Immunity maintains lifelong spatial memory

Earlier studies showed that the ability of immune-deficient
mice to perform a hippocampus-dependent spatial learn-
ing/memory task is impaired [3,37,45]. Recently, we
showed that immune-deficient mice are able to acquire a
new task that requires spatial navigation, but they are
impaired in the subsequent memory of their training [5].
Moreover, we showed that even young, healthy animals
suffer from impaired spatial memory as a consequence of
sudden T cell depletion [5]. As a corollary, immune-related
spatial memory impairment could be partially corrected by
immune reconstitution [5]. These results suggested that
immunological malfunction has a devastating effect on
hippocampus-dependent spatial memory capacity and is
reversible by immune activation.

Hippocampus-dependent spatial and episodic memories
are severely affected, even during what is considered to be
normal aging. Such hippocampal dysfunction ismanifested
by the reduced ability to retrieve a place map of a familiar
environment and to adjust to spatial changes. Some of
these neuronal dysfunctions have been attributed to dis-
ruptions in Ca2+ homeostasis. Higher cellular Ca2+ levels
in combination with reduced basal cAMP levels cause an
increase in the after-hyperpolarization potential, render-
ing the aged neurons far off their action potential threshold
and, therefore, less excitable compared with young cells
[46]. An additional aspect of hippocampal aging, possibly
contributing to the impairment in spatial memory
performance, is the reduction in the number of synaptic
369
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contacts in the aged hippocampus and the dentate gyrus
[46] and in the presynaptic density [47]. We found reduced
expression of two presynaptic genes, Syt10 and Cplx2, in
immune-deficient mice [5]. Moreover, restoration of their
expression in response to immune reconstitution was cor-
related with restoration of spatial memory [5]. Our results
further support the possibility that the reduced synaptic
activity found in aging is, at least partially, due to immune
senescence (Figure 1).

The mechanisms underlying brain maintenance by
peripheral immunity
Immune-dependent maintenance of brain plasticity under
physiological conditions is mediated by upregulation of
beneficial substances including brain-derived neurotrophic
factor (BDNF) [3] and insulin-like growth factor-1 (IGF-1)
[48] and by improving the ability of glial cells to sense and
respond to various deviations from homeostasis [49,50].
Under neurodegenerative conditions, the peripheral
immune system can attempt to reverse or limit the adverse
local inflammatory milieu [51,52]. Importantly, normal
brain aging is also characterized by elevation in microglial
activation markers, in association with structural and
phenotypic changes [53].

Immune-dependent brain maintenance under

physiological conditions

As stated earlier, one possible mechanism by which the
immune systemmaintains brain plasticity is by regulating
BDNF expression. BDNF is an important factor in almost
all aspects of brain plasticity including hippocampus-de-
pendent learning and memory abilities [54,55], adult
hippocampal neurogenesis [56,57] and psychological
stability [58]. Our studies have shown that levels of BDNF
production by hippocampal neurons are associated with
CNS-specific T cell activity; these levels are reduced in
immune-deficient mice and in mice deficient in CNS-
specific T cells [3] (Figure 1). In addition, T cells contribute
to restoration of reduced hippocampal BDNF levels under
mental stress and in depression [38,39]. BDNF could also
be secreted by T cells themselves [59,60], and it is possible
that T cells contribute to BDNF secretion by glial cells [61].
One possible mechanism for the immune-mediated
plasticity that is regulated by BDNF is through the role
of BDNF in promoting docking of neurotransmitter
vesicles in the presynaptic active zone [62]. As mentioned
earlier, we have demonstrated in immune-deficient mice a
reduction in spatial memory performance [5] that is associ-
ated with impaired BDNF production [3] and reduced
expression of genes encoding presynaptic proteins involved
in synaptic vesicle docking [5]. Deficient BDNF activity
was also demonstrated in the aged; an age-dependent
reduction was documented in the high-affinity BDNF re-
ceptor TrkB [63]. Moreover, reduced BDNF levels in the
hippocampus were correlated with poor memory perform-
ance in aged rats [64].

T-cell-dependent maintenance of the CNS is also
mediated by their crosstalk with resident glial cells. Under
physiological conditions, microglia and astrocytes act as
active sensors of their microenvironment and have the
ability to identify and respond to any disturbance of tissue
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homeostasis, for example by regulating ionic composition,
clearing neurotransmitter (i.e. glutamate) excess from
synaptic clefts and providing growth factors and nutrients
to neurons [65–68]. Naı̈ve microglia can acquire a pheno-
type capable of presenting antigens and engaging in dialog
with T cells [48,50,69]. Such microglia, depending on the
nature of the T-cell-derived cytokines they encounter, can
be activated to achieve various beneficial phenotypes. For
example, activation with interferon-g (IFN-g) enhances
glutamate buffering [50], whereas activation with inter-
leukin (IL)-4 induces secretion of IGF-1 [48,69], which
supports cell renewal [70] and cognitive ability. Similarly,
recent findings demonstrated that astrocytes acquire a
neuroprotective phenotype after their coculture with T
cells [49]. Together, these findings suggest that the per-
ipheral immune system supports the ability of microglia
and astrocytes to contain and correct small deviations from
homeostasis (Figure 1).

Importantly, infiltrating blood-borne immune cells can
scarcely be detected in the healthy CNS parenchyma [71–

73], raising the question of how T cells interact with CNS
resident cells and how they contribute to CNS mainten-
ance. Recent models presented by us and others suggest
that such communication occurs through T cell activation
by antigen-presenting cells that populate the borders of the
CNS (i.e. the meninges, the choroid plexus and the peri-
vascular spaces) or at the adjacent cervical lymph nodes
[7,8,74]. Such activated T cells can then secrete cytokines
and neurotrophic factors that activate resident glial cells or
even operate directly on neurons.

Our concept of immune-dependent brainmaintenance is
consistent with evidence from other systems in which
immune cells contribute to tissue homeostasis, for example
T-cell-dependent regulation of bone homeostasis. Some T-
cell-derived cytokines are pro-osteoclastogenic, whereas
others inhibit bone formation. The identity of the cytokines
secreted is thought to be determined by the manner by
which the T cells were activated [75]. Moreover, T-cell-
deficient mice suffer from osteopenia as a result of
increased osteoclastic bone resorption [76].

Immune-dependent brain maintenance under

neurodegenerative conditions

When the deviation from homeostasis exceeds the capacity
of resident microglia to eliminate the risk factors [52], as is
the case in various neurodegenerative diseases and might
be the case in aging [77], microglial activation is no longer
supportive but becomes detrimental. Under such con-
ditions, a well-controlled T cell responsemight act to repair
and restore homoeostasis by controlling microglial acti-
vation [48,51,78], either directly or via the recruitment of
blood-borne monocytes that, in turn, regulate the micro-
glial response [71,79]. Blood-borne monocytes were shown
to contribute to CNS repair by efficient removal of plaques
[51,52], by mediating a regulatory role [79] and by provid-
ing growth factors such as IGF-I and BDNF [71] (Figure 1).

Additional independent studies have supported the con-
tention that local neuroinflammation supports brain
plasticity under various pathological and/or neurodegen-
erative conditions [80]. For example, increased neurogen-
esis is found in the spinal cord in an experimental model of
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multiple sclerosis (MS) [81]. Similarly, inhibition of post-
ischemic inflammation by minocycline reduces neurogen-
esis [82]. Likewise, treatment with limiting amounts of
IFN-g in a model of Alzheimer’s brain enhances neurogen-
esis [83]. Moreover, it was shown that intrahippocampal
injection of lipopolysaccharide (LPS; a prominent com-
ponent in the outer membrane of gram-negative bacteria
that induces a strong innate inflammatory response),
which gave rise to long-lasting microglial activation,
affected the fate of the hippocampal neural progenitor cells
and the properties of the newly formed neurons [84].

Immune-related pathological conditions impair brain

plasticity

Despite all that has been said earlier regarding the con-
tribution of peripheral immunity to the maintenance of
CNS homeostasis and thus to cognitive ability, the devas-
tating effect of an overwhelming autoimmune response or
innate inflammatory response on brain function cannot be
denied. Thus, for example, MS is a progressive auto-
immune disease of the CNS that is characterized by neu-
ropsychiatric symptoms. The common cognitive symptoms
include deficits in complex attention, reduced efficiency of
information processing, impaired executive functioning
and a decline in long-termmemory abilities [85].Moreover,
a substantial proportion of MS patients exhibit depressive
symptoms [86]. Importantly, a robust peripheral inflam-
matory response might also impair brain function, given
that elevated levels of proinflammatory cytokines such as
IL-6, IL-1b and TNFa were all shown to mediate negative
behavioural consequences [87]. Furthermore, repeated
injection of LPS results in an accumulation of Ab1–42 in
the hippocampus and cerebral cortex of mouse brains and
inmemory dysfunction [88]. Despite the distinct etiology of
these conditions, many of the factors that are associated
with the inflammatory response and are responsible for the
cognitive impairment are common to the different para-
digms, including elevation of oxidative stress and
increased levels of pro-inflammatory cytokines [89].

Additional aspects of brain plasticity are impaired
under an overwhelming local inflammatory response.
Thus, for example, inflammation has been linked to stem
cell dysfunction [90], and chronic brain inflammation has
been linked to a non cell-autonomous dysfunction of the
endogenous CNS stem cell compartment [91]. Accordingly,
immune activation aimed at maintaining and/or restoring
brain homeostasis should be carefully designed and tightly
regulated to avoid the devastating effect of overwhelming
inflammation.

Characteristics of the aging immune system
The results, discussed earlier, suggested that T cell mal-
function could have a devastating effect on memory
capacity. Alterations in T lymphocyte activities underlie
much of the age-related decrease in the protective immune
response [92]. The T cell population is maintained by
thymic release of nascent naı̈ve T cells throughout life;
bone-marrow-derived T lymphocyte precursors migrate to
the thymus where they acquire their specificity through a
series of gene recombination events that result in amature
T cell receptor (TCR) [93]. Several factors have been linked
to the decline in T cell function with age; however, it seems
that chronic age-induced thymic atrophy, which results in
decreased output of naı̈ve T cells with impaired functional
activation properties, is the most important factor. Thymic
involutionwas attributed to variousmechanisms including
defects in the T cell progenitor pool and changes in the
thymic microenvironment (e.g. loss of thymic epithelial
cells, decreased capacity to induce TCR rearrangement
and altered production of growth factors and hormones).
In addition to thymic involution, age-related changes are
observed in the hematopoietic compartment of the bone
marrow and in peripheral lymphoid tissues and lympho-
cytes [94]. The hematopoietic compartment of the bone
marrow decreases and is replaced by adipose tissue. Such a
reduction in bone marrow cellularity could be due to the
reduction in the levels of systemic growth hormones and
impairment in local secretion of cytokines essential for the
development of lymphoid cells [94]. Age-related changes,
mostly in architecture, are also observed in the secondary
lymphoid tissues, the spleen and lymph nodes. Such
changes, which include a decrease in lymphocyte cellular-
ity and an increase in adiposity, result in a decreased
ability to provide the proper environment for immune
response to take place [94].

Another factor contributing to the reduced T cell immu-
nity in the aged is increased peripheral suppressor cell
activity [94]. One such population of suppressor cells is
that of the regulatory T cells (Tregs), a T cell subset that
regulates effector T cells, and in particular those recogniz-
ing self-antigens, both in rodents and in humans, to pre-
vent excessive damage to host tissue. These regulatory
cells are crucial for controlling the activity of self-reactive
T cells [95,96]. In fact, in young healthy animals it was
proposed that Tregs provide a regulatory mechanism that
enables the recruitment of autoreactive effector T cells,
without encountering the risk of inducing autoimmune
diseases [24,40]. A recent study showed an age-dependent
increase in the levels of Tregs in the lymphoid organs of
mice and in the peripheral blood of human subjects. These
accumulating cells maintain their suppressor activity and
their depletion in aged mice improves T cell immunity;
this ismanifested by enhanced secretion of the pro-inflam-
matory cytokine IFN-g by effector T cells in response to
immunological challenge [97]. Together, these results
suggest that Tregs accumulation contributes to the per-
ipheral immune suppression associated with aging. It
should be noted that additional types of suppressor cells
(e.g. myeloid suppressor cells) were also shown to contrib-
ute to immune senescence. Similarly to Tregs, ablation of
these cells, which accumulate with age, restores T cell
immunity [98]. Because regulatory cells play a part in the
balance between the need for adaptive immunity and the
risk of an overwhelming response, these cells serve a
neuroprotective role under conditions of excessive inflam-
mation or neuroinflammation [99]. Importantly, a careful
distinction should be made in this regard between sup-
pression of adaptive immunity in the periphery versus
local inhibition; suppression in the periphery eliminates
the potential ability to recruit immune cells to sites of
inflammation that might be needed for local immunomo-
dulation.
371



Opinion Trends in Neurosciences Vol.32 No.7
Immunological age: a non-chronological factor in brain
senescence
The findings that the aging brain suffers more from func-
tional deficits rather than from substantial anatomical
defects or cell death [46], together with our observation
that adaptive immunity maintains CNS plasticity, suggest
that aging of the immune system is a factor in age-related
cognitive loss that might be amenable to restoration. We
suggest that the age-associated damage accumulation and
the increased need for peripheral intervention are not
addressed with an appropriate immune response, owing
to the aging of the immune system itself. Accordingly,
brain senescence, and specifically memory loss, does not
necessarily reflect chronological age but, rather, the
‘immunological age’ of the affected individual. This view
might explain (in addition to other factors including life-
long nutrition, physical fitness and genetic factors) the
individual and variable nature of brain senescence, both
in terms of the age of occurrence and the nature of the
functional loss (Figure 1). It might also provide an answer
to the key mystery: why do some people age better than
others? We believe that this is a reflection of the aging of
the immune system and its genetic regulation. According
to this view, risk factors accumulating in the brain will
leave their age-related signature if the immune system
fails to contain them.

Based on our results, immunity and immunity-to-self
are systems that participate in two complementary roles;
although immunity primarily provides host defence and
resilience to pathogens, immunity to self primarily pro-
vides a maintenance function and resilience to internal
risk factors [24]. The adaptive arm of the immune system
that is needed to maintain and protect the organism from
damage to the tissue as a result of either internal or
external threats is of T cells that recognize self-antigens.
We, therefore, propose that assessing the individual’s
immune potency before old age could serve a function in
predicting future memory impairments. Such immunologi-
cal assessment should focus on evaluating thymic output
and measuring the amount and functionality of peripheral
suppressor cells, the two main factors in age-dependent
deterioration of T cell immunity. Specifically, thymic atro-
phy could be monitored by quantifying the amount of naı̈ve
T cells in the peripheral blood, possibly by polymerase
chain reaction analysis of TCR excision circles (sjTRECs),
an episomal DNA characteristic of recent thymic emigrant
T cells [100]. The frequency of regulatory T cells can be
assessed by fluorescence-activated cell sorting (FACS)
analysis ofmononuclear cells isolated from the blood, using
antibodies against foxp3, a transcription factor uniquely
expressed by this population [101]. Other markers charac-
teristic of immune senescence could also be tested, for
example, the CD4+:CD8+ T cell ratio [92].

Immunization against memory loss: fantasy or reality?
The long process of age-dependent damage accumulation
in the brain creates a neurotoxic environment that strongly
resembles the conditions created as a result of acute CNS
injury or neurodegenerative disease. These common
characteristics include elevation in oxidative stress, ionic
imbalance and excitotoxicity. This similarity, together
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with the facts that (i) immune compromised mice suffer
from impaired spatial memory that is amenable to repair
by restoring normal T cell levels, (ii) T cell immunity
deteriorates with age, and (iii) boosting of peripheral
immunity improves the ability of the CNS to fight the
toxicity that is created as a result of an injury or a neu-
rodegenerative disease, suggest that rejuvenation of per-
ipheral immunity might be a feasible approach to prevent
brain aging. Indeed, we found that aged mice, in which
peripheral immune potency was manipulated, performed
better than non-treated aged mice in a hippocampus-de-
pendent spatial memory test [5]. These results are in line
with other studies showing how factors such as physical
activity [102] and nutrition [103], including calorie restric-
tion [104], alleviate some symptoms of brain aging
(Figure 1).

Exercise facilitates cognitive ability [105], protects from
neurodegeneration [106–108] and improves mental
stability [109]. These beneficial effects are mediated by
elevation in growth factor production [110,111] and in
neuronal plasticity [112] (for reviews, see Refs
[113,114]). Calorie restriction was shown to protect
neurons against genetic and environmental factors
through its effect on energy and oxygen radical metabolism
and various cellular stress response systems [104].
Immune-related activity might, thus, be the missing link
between exercise and brain plasticity (Figure 1); moderate
exercise was shown to enhance immune function and
specifically T cell immunity [115,116]. Similarly, calorie
restriction delayed T cell senescence manifested by
increased levels of naı̈ve T-cells and preservation of the
TCR repertoire [117]. Recently, it was suggested that the
beneficial effects of exercise and dietary restrictions act
through hormesis mechanisms [118–120]. Accordingly, the
mild stress induced by low intensity exercise or diet
improves the individual’s ability to cope with cytotoxic
elements such as oxidative stress. We suggest that mild
stress could be viewed as a preconditioning effect as far as
the ability of the immune system to cope with breaching of
homeostasis. According to this contention, the effect of diet
or exercise can be replaced by vaccination, aimed at boost-
ing the relevant immune response as a way of overcoming
an insufficient physiological preconditioning that might
characterize the aging immune system.

Immunization to boost peripheral immunity against
memory loss might be a future therapy for maintaining
functional plasticity in the elderly. Such an approach
might be viewed as a multi-dimensional treatment for
restoration of brain homeostasis needed for normal func-
tion. The choice of the immune-based vaccination should
take into consideration the nature of the immunological
deficit in aging and, therefore, might involve inhibition of
suppressor cells. Such immunization protocols that involve
downregulation of immune suppression together with acti-
vation of the relevant T cell population were successfully
tested in various animal models of cancer [121,122].

A similar approach has been demonstrated as effective
in animal models of acute injuries [28,30], neurodegenera-
tive diseases [29,51,123], amyotrophic lateral sclerosis
[124–126] and of psychological stress [37–39], further sup-
porting the notion that boosting immunity to self might



Opinion Trends in Neurosciences Vol.32 No.7
help to strengthen and maintain the physiological mech-
anisms of maintenance when balance is lost.

Conclusion
Brain aging does not always coincide with the rate of aging
of the rest of the body. This leads to an enigma: might the
brain be more vulnerable to the aging of a master system
that maintains the entire body, the deterioration of which
affects brain function? Here, we present a novel idea
suggesting that brain aging is a reflection of insufficient
maintenance, constitutively provided by the peripheral
immune system. These findings suggest an approach for
preventing or arresting aging of the brain in a non-invasive
manner and without any direct manipulation of the brain.
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