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a b s t r a c t

An organism’s behavior is determined by the way it senses and perceives the surrounding environment,
and by its responses to these stimuli. The major factors known to affect the behavioral response to an
event are genetic background, environmental factors, and past experiences, and their imprinting on
the relevant brain circuits. Recently, circulating immune cells were introduced as novel players into this
system. It was proposed that the brain and circulating immune cells engage in a continuous dialogue that
takes place within the brain’s territory, though outside the parenchyma (occurring within the brain’s bor-
ders – the choroid plexi, the brain meninges and the cerebrospinal fluid (CSF)). The cytokines secreted by
activated leukocytes residing at the borders were shown to affect neurotrophic factors production within
the parenchyma. Here, we suggest that such a dialogue is stimulated at the brain’s borders, upon need, by
a ‘‘danger’’ signal that originates in the parenchyma in response to any destabilizing event, and discuss
the potential role of reactive oxygen species (ROS) in transmitting this signal. Accordingly, a failure to
restore balance is likely to lead to aberrant responses to subsequent events. This view thus supports
the contention that circulating immune cells are required to maintain the brain’s balanced activity and
suggests a novel mechanism whereby the surveying immune cells are sensing the brain’s status and
needs.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Factors shaping subjective behavior

When challenged by an external stimulus, an individual’s
behavior is directed towards evaluating the destabilizing potential
of the stimulus. The interface between the incoming information
and the evaluation process is formed within limbic brain struc-
tures, which include the hippocampus, amygdala and prefrontal
cortex. These structures integrate the physiological, emotional,
and memory components of the individual’s reaction to the stimu-
lus (Sullivan et al., 2006). The two major factors known to deter-
mine the perception of an event and the consequential response
are genetic background (Binder et al., 2010; Jovanovic and Ressler,
2010) and past experiences (McCauley et al., 1997; Sullivan et al.,
2006), and their imprinting on the limbic and stress-response
systems.

Experiences that are most likely to leave their mark on the wir-
ing patterns of the limbic synaptic systems are those encountered
during infancy and early childhood, times which are considered
critical for the fine tuning of neuronal wiring (Sullivan et al.,
ll rights reserved.
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2006). For example, filial imprinting, the process by which an emo-
tional bond to the mother or caregiver is formed, causes changes in
synaptic connectivity in prefrontal forebrain regions (Sullivan
et al., 2006). While experience-dependent fine-tuning provides
an optimal adaptation of the brain to a given environment, when
synaptic reorganization is driven by an adverse environment, it
could result in ‘‘defective’’ synaptic wiring that will cause aberrant
behavior throughout life (Andersen and Teicher, 2004). In addition,
traumatic experiences at any stage were shown to cause an over
sensitization of the central stress response system (McGuire
et al., 2010; Coplan et al., 1996; Bhatnagar and Dallman, 1998; Ul-
rich-Lai et al., 2007; Heim et al., 2008; Zoladz et al., 2008). Nor-
mally, the adaptive stress response is coordinated by secretion of
two neuropeptides: corticotropin-releasing hormone (CRH) and
vasopressin (AVP), which are secreted by the hypothalamus and
activate the HPA axis, resulting in secretion of corticosteroid hor-
mones. The spread of corticosteroids through the circulation allows
the coordination of brain and somatic functions that are geared to-
wards coping with stress, recovery and adaptation (reviewed in:
(de Kloet et al., 2005)). Hypersensitivity of the HPA axis due to
traumatic childhood experience increases the risk of developing
depression later in life in response to stress (Heim et al., 2008).
Similarly, patients with post traumatic stress disorder (PTSD) show
elevated CRH levels in their cerebro-spinal fluids (CSF) (Bremner
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et al., 1997), and enhanced secretion of cortisol following a trau-
matic event (Elzinga et al., 2003).

Regardless of past mental experiences or episodes, evidence
suggests that immune related dysfunction, either congenital or as
a result of a postnatal event, could, by itself, lead to behavioral,
mental or cognitive malfunctions at adulthood. For example,
strong activation of an immune response during pregnancy was
shown to cause a persistent immune abnormality in the offspring
(Mandal et al., 2010; Yamaguchi et al., 1983; Fujii and Yamaguchi,
1992; Cardon et al., 2010). These offspring show increased suscep-
tibility to various mental disorders, such as schizophrenia, and aut-
ism (Ciaranello and Ciaranello, 1995; Shi et al., 2003; Brown, 2006).
Similarly, infection during early childhood is correlated with sub-
sequent development of Tourette syndrome (Church et al., 2003).
A recent study by our group demonstrated that congenital immune
deficiency in mice causes abnormal sensorimotor gating (Cardon
et al., 2010), an activity that is impaired in schizophrenia (Swerdlow
et al., 2006), as well as in other neuropsychiatric disorders (Swerd-
low et al., 1993, 1995; Castellanos et al., 1996). Another example
connecting immune profile to mental health is the case of post trau-
matic stress disorder (PTSD), in which a specific gene expression
pattern in peripheral blood mononuclear cells of patients hospital-
ized immediately following the experience of a stressful event pre-
dicted emergence of PTSD (Segman et al., 2005). One possible
explanation for these findings is that such immune abnormalities,
similar to the defective neuroendocrine stress response, impair
the individual’s ability to cope with stressful life events, thus
increasing the susceptibility to develop behavioral abnormalities.

Several studies done in our laboratory over the last few years
provided the basis for the hypothesis that links adaptation to stress
with the presence/activity of circulating immune cells by showing
that the presence of a functional adaptive immune system at the
time of exposure to mental stress reduces susceptibility to post-
traumatic behavioral abnormalities (Cohen et al., 2006; Lewitus
et al., 2008, 2009). In this perspective article, we suggest that pro-
tective immune-derived factors are produced by the circulating
immune cells within the brain’s borders in response to an alarm
signal that is emitted by the stimulated brain (Fig. 2).

1.2. Interaction of systemic immune cells with the brain

The first line of immune defense within the CNS is mediated by
microglia, which are the resident macrophages of the CNS paren-
chyma (McKercher et al., 1996; Ransohoff and Cardona, 2010).
Although previously referred to as ‘‘resting’’ cells, it is now becom-
ing clear that microglia continuously sample their environment to
monitor changes in CNS homeostasis (Nimmerjahn et al., 2005),
and rapidly respond to threats (Davalos et al., 2005). It has been
suggested that microglia are able to polarize their activation state
to achieve the appropriate responses to varying challenges (Ranso-
hoff and Perry, 2009), in a manner similar to peripheral macro-
phages (Geissmann et al., 2010; Martinez et al., 2009).

In addition to the monitoring performed by resident microglia,
systemic immune cells are also engage in a constant immune sur-
veillance of the CNS that takes place primarily within the CSF. Such
immune surveillance is carried out primarily by memory T cells,
which were shown to migrate from the blood to the CSF through
the choroid plexus and meninges, and comprise 80% of the cells
in the CSF of healthy individuals (Ransohoff et al., 2003). Further-
more, the continuous circulation of T cells between the periphery
and the CNS was demonstrated. T cells re-enter the bloodstream
from the CSF and are replaced by new lymphocytes approximately
every 12 h (Kivisakk et al., 2003; Ransohoff et al., 2003; Engelhardt
and Ransohoff, 2005; Reboldi et al., 2009). The initial encounter of
naïve T cells with neuroantigens occurs mainly in the peripheral
lymphatic organs. Despite the lack of classical lymphatic vessels
in the CNS, there are indications for drainage of CNS antigens to
the CSF circulatory pathway, finally reaching the deep cervical
lymph nodes, the nasal lymphatics and the spleen, via the circula-
tion (Ransohoff et al., 2003; Engelhardt and Ransohoff, 2005).
While circulating within the CSF, the T cells can be reactivated
by encountering their cognate antigen presented by APCs that pop-
ulate the choroid plexus, the CNS meninges, and the perivascular
and sub-arachnoid spaces (McMenamin et al., 2003; Ransohoff
et al., 2003; Kawakami et al., 2004).

The entrance of T cells through the choroid plexus into the ter-
ritory of the CNS was primarily investigated to explain the initia-
tion of neuroinflammation. It was demonstrated that the first
wave of encephalitogenic T cells enter the CNS through the choroid
plexus (Reboldi et al., 2009). Their subsequent reactivation in the
CSF induces expression of adhesion molecules on the cerebral
blood vessel endothelium, enabling the penetration of a second
wave of T cells to the parenchyma (Bartholomaus et al., 2009; Re-
boldi et al., 2009). Several molecules that are expressed on the cho-
roid plexus epithelium were found to mediate the penetration of T
cells, including CCL20, which binds to CCR6 on the T cells (Reboldi
et al., 2009), CD73 (Mills et al., 2008), and P-selectin (Kivisakk
et al., 2003). In the following section we will discuss recent lines
of evidence suggesting a fundamental role for these surveying T
cells in supporting normal brain function and plasticity.

1.3. Systemic immune cells support brain function and plasticity

The need for systemic immune cells to support brain function
and plasticity was first demonstrated using immune deficient
mice, and mice lacking specific immune-cell populations. It was
found that adult neurogenesis, neurotrophic factor production,
and hippocampus-dependent functions such as spatial memory
and sensorimotor gating are all dependent on immune cell avail-
ability (Kipnis et al., 2004; Ziv et al., 2006; Brynskikh et al., 2008;
Ron-Harel et al., 2008; Wolf et al., 2009a,b; Cardon et al., 2010).
Apparently, the immune-brain dialogue needed for normal brain
function under physiological conditions occurs within the brain’s
territory and is mediated by the CNS-surveying T cells: A recently
published study demonstrated that hippocampus-dependent cog-
nitive ability is specifically supported by the T cells that reside
within the brain meninges (Derecki et al., 2010). The ‘‘long-dis-
tance’’ communication between the relevant brain structures (i.e.
hippocampus) and the T cells might be mediated by cytokines that
are secreted in the meninges and arrive at the parenchyma through
the CSF. Specifically, it was shown that IL-4, which is secreted by
meningeal resident T cells, supports spatial memory performance
by induction of BDNF production in the hippocampus (Derecki
et al., 2010). The need for immune-cell activity to ensure normal
brain function is ongoing: Sudden T cell depletion in young healthy
adult mice causes cognitive impairment, whereas immune recon-
stitution restores spatial memory abilities in immune deficient
mice (Brynskikh et al., 2008; Ron-Harel et al., 2008). The specific
cells that support normal cognitive performance and neurogenesis
are CNS-specific autoreactive CD4+ T cells. This observation was
based on the comparison made between: Tova-transgenic mice,
in which the majority of the T cell population is specific to the
non-self antigen (ovalbumin), and Tmbp-transgenic mice, in which
the majority of the T cell population is specific to the CNS antigen
myelin basic protein (MBP). While Tmbp-transgenic mice showed
normal cognitive ability and increased hippocampal neurogenesis,
the Tova-transgenic mice resembled immune deficient mice in
their impaired cognitive ability, and their reduced hippocampal
neurogenesis (Ziv et al., 2006).

Increased T cell numbers are found in the borders of the CNS
following increased brain activity (i.e. cognitive testing (Derecki
et al., 2010) and acute mental stress (Lewitus et al., 2008)). These



Fig. 1. Skewed T cell repertoire results in increased expression of the carbonyl detoxification enzyme Glyoxalase-1 in the hippocampus and choroid plexus. Glyoxalase-1
expression in the hippocampus of wild type (n = 6) mice and mice lacking autoimmune T cells (Tova-transgenic mice (Ziv et al., 2006); n = 9) was measured by real-time PCR
(a; t7.2 = 4.8; P = 0.001) and by Western blot (b; t3.97 = 5.6; P = 0.005). (c) Immunohistochemical staining for Glyoxalase-1 demonstrated its expression by astrocytes
(GFAP + cells) (i), in the statum radiatum of the hippocampus (ii). (d) T-cell deficient (nude) mice on a Balb/c background were transplanted with T cells from wild type donors
of the same genetic background, and tested for Glo1 expression in the choroid plexi by real-time PCR, 4 weeks following transplantation. Glo1 expression was higher in nude
mice (n = 5) compared to wild type controls (n = 6), and was reduced following immune reconstitution (n = 5) (ANOVA: F2,12 = 5.31, P = 0.02; ⁄P < 0.05; Fisher LSD post hoc
analysis). Error bars represent SEM.
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findings, taken together with the contribution of systemic immune
cells to successful coping with mental stress (Cohen et al., 2006),
raise the question as to whether local cytokine secretion by T cells
within the brain’s territory (in the choroid plexus/meninges/CSF)
can restore balance following any mental activity, thereby ensur-
ing an adequate behavioral response to subsequent stimuli (Fig. 2).
2. Protective autoimmunity: Circulating immune cells reduce
neuroinflammation

Proinflammatory cytokines are abundantly expressed in the
healthy brain (Vitkovic et al., 2000; O’Connor et al., 2009) and
Fig. 2. A model describing the molecular mechanism of immune-mediated resolution of
help to the circulating immune cells that reside within the brain’s territory but ou
housekeeping, and frames (6–9) describe their involvement in restoration of homeostasi
transmigration from blood vessels into the stroma of the choroid plexus (CP) (1). CD4+ me
self-antigen (Ag) (2). Upon recognition of self-Ag, T lymphocytes cross the epithelial blo
expressing APCs results in the secretion of T cell-derived cytokines, and specifically IL-
induces secretion of neuroprotective substances (i.e. BDNF and IGF-1) by local microglia
resident microglia, characterized by secretion of reactive oxygen species (ROS), NO, and
model suggests that ROS exit the parenchyma to the CSF and serve as the ‘‘third signal’’,
which facilitate T cell activation despite low antigen presentation (7). This stimulation o
response to increased toxicity are expected to secrete increased levels of IL-4, which t
Exposure of cytotoxic microglia to IL-4 causes downregulation of proinflammatory facto
support restoration of homeostasis (9). Modified from (Schwartz and Shechter, 2010).
are involved in the regulation of many physiological functions such
as pain sensitivity, memory consolidation, and neural plasticity
(Avital et al., 2003; Wolf et al., 2003, 2006; Shavit et al., 2005;
Goshen et al., 2007). Elevation in brain cytokine levels is consid-
ered part of the adaptive response to external stimuli; for example,
exposure to acute psychological stressors, by induction of catechol-
amines (adrenalin, noradrenalin, and dopamine), induces an in-
crease in brain proinflammatory cytokines (including TNFa, IL-1b
and IL-6) (Bierhaus et al., 2003; Johnson et al., 2005), which mod-
ulate the neuroendocrine and behavioral responses to the stressor
(Berkenbosch et al., 1987; Bernton et al., 1987; Turnbull and Rivier,
1999; Butterweck et al., 2003; Goshen et al., 2003; Harden et al.,
2008; Abraham and Johnson, 2009; Goshen and Yirmiya, 2009).
mental stress. This scheme summarizes our view of how the parenchyma signals for
tside the parenchyma. Frames (1–5) describe T-cell mediated support of brain

s following exposure to stress. Memory T cells enter the cerebrospinal fluid (CSF) by
mory T cells are primed in the CP by antigen-presenting cells (APCs) presenting CNS-
od-CSF-barriers into the CSF (3). Reactivation within the CP or the CSF by MHC-II-
4, into the CSF (4). IL-4 reaches the parenchyma through the CSF circulation, and
(5). Exposure to acute psychological stress induces a proinflammatory phenotype in

increased levels of proinflammatory cytokines (i.e. IL-1b, TNFa and IL-6) (6). Our
in addition to the T-cell receptor (TCR) and co-stimulatory signals (CD28/CD80,86),
ccurs either by acting directly on T cells or by priming the APCs. T cells activated in
hen penetrates the parenchyma, and binds to IL4R on the cytotoxic microglia (8).
r secretion, and induces expression of neuroprotective factors (BDNF, IGF-1), which
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The immediate source of neuroinflammatory cytokines may be
activated microglia: administration of a microglial inhibitor blocks
stress-dependent elevation of IL-1b secretion in the hypothalamus
(Blandino et al., 2006). Excessive levels of proinflammatory cyto-
kines (in response to chronic stress exposure, or loss of regulatory
mechanisms that terminate the adaptive stress response) initiate
an inflammatory reaction (Olivenza et al., 2000; Madrigal et al.,
2001, 2002) that could lead to long-lasting behavioral abnormali-
ties and neurodegeneration (Gilhotr et al., 2010; Koo et al., 2010;
Allan and Rothwell, 2003; Dhir et al., 2006; Gilhotra and Dhingra,
2009; Goshen and Yirmiya, 2009; Koo and Duman, 2009; Lindqvist
et al., 2009). Similar etiology of the local brain inflammatory re-
sponse is also seen in other extreme conditions such as acute
CNS injury and neurodegeneration (Di Filippo et al., 2010; Glass
et al., 2010). In both cases, brain microglia are activated in re-
sponse to the abnormal elevation in endogenous agents (i.e. amy-
loid-b) and secrete proinflammatory substances such as TNFa, IL-
1a and b, IL-6, iNOS, COX-2, and NFjb (Laskin and Pendino,
1995). Such activated microglia, although effective for the removal
of the pathological factor(s), constitute a threat to the delicate neu-
ronal tissue if they become chronically activated.

Studies performed by our group and others over the last decade
distinguished this detrimental local neuroinflammatory response
from the benefit exerted by systemic immune-cell activation (Moa-
lem et al., 1999; Hammarberg et al., 2000; Hauben et al., 2000;
Frenkel et al., 2003; Benner et al., 2004; Simard et al., 2006; Bois-
sonneault et al., 2009; Skihar et al., 2009). We showed that recruit-
ment of systemic immune cells promotes the termination of the
local neurotoxic inflammatory response (Shechter et al., 2009).
This protective response, controlled by the systemic-immune sys-
tem, is mediated by circulating T cells specific to CNS antigens
(Moalem et al., 1999; Hauben et al., 2000; Shechter et al., 2009)
that contribute to modifying microglial activity, and to boosting
infiltration of blood–borne monocytes upon need (Shechter et al.,
2009). The infiltrating macrophages, together with the microglia
that they regulate, remove dead cells and cell debris, buffer toxic
compounds (such as glutamate and reactive oxygen species), and
produce growth factors needed for cell survival and renewal, while
downregulating inflammation-associated compounds such as IL-
1b, TNFa, iNOS and COX-2 (Hauben et al., 2000; Butovsky et al.,
2007; Rolls et al., 2008; Shechter et al., 2009). The phenotype of
microglia activated by T cell-derived cytokines is distinct from that
of microglia activated by pathogen-related compounds (i.e. LPS) or
endogenous cytotoxic agents (i.e. amyloid-b). Microglia or blood-
borne macrophages exposed to T-cell derived cytokines (i.e. IL-4,
IFNc) acquire neuroprotective features that are manifested by re-
duced secretion of proinflammatory cytokines (i.e. TNFa, IL-6)
and increased secretion of insulin like growth factor-1 (IGF-1)
(Butovsky et al., 2005; Butovsky et al., 2006a,b; Shaked et al.,
2005; Beers et al., 2008; Chiu et al., 2008; Shimizu et al., 2008; Kor-
onyo-Hamaoui et al., 2009). IGF-1 was shown to enhance neuro-
protection under various conditions of brain pathology and
neurodegeneration (Zheng et al., 2000). Notably, astrocytes also ac-
quire a neuroprotective phenotype following their co culture with
T cells (Garg et al., 2008, 2009).

The entire concept attributing a beneficial role to autoreactive T
cells in CNS protection, repair and maintenance that was collec-
tively named by our group as ‘Protective autoimmunity’ (Moalem
et al., 1999), does not imply that all T cells that recognize CNS anti-
gens are beneficial and under all circumstances. If the autoreactive
response escapes regulation it could lead an autoimmune disease.
Such a regulation that enables a beneficial autoimmune disease
controls the specificity and affinity of the participating cells, and
the timing, location and duration of their response.

As mentioned earlier, a specific role was attributed to the T cell
cytokine, IL-4, in supporting normal brain function (Derecki et al.,
2010). Lack of IL-4 negatively affects cognition, whereas increased
brain activity (i.e. that induced by cognitive testing), results in ele-
vation in T cell numbers, and in IL-4 expression within the menin-
ges (Derecki et al., 2010). Interestingly, in vitro studies identified
IL-4 as a critical cytokine for counteracting neuroinflammation
(Butovsky et al., 2005). Of special interest are the following obser-
vations: (1) Microglia activated by IL-4 remain committed to their
protective phenotype even when exposed to a threatening envi-
ronment in the form of LPS or aggregated b-amyloid, and can coun-
teract the threat. (2) Exposure of microglia pre-activated to a
cytotoxic phenotype to IL-4 induces a phenotype switch towards
neuroprotection (Butovsky et al., 2005; Schwartz et al., 2006).

Thus, brain cytokine levels must be under constant regulation
to enable normal brain function and a rapid response upon need,
with an efficient and fast return to homeostasis (Fig. 2). Here, we
suggest that such regulation of the brain milieu is mediated by cir-
culating immune cells at the borders of the CNS, according to the
following scenario: Any destabilization in brain homeostasis that
cannot be locally contained by the microglia and/or astrocytes, will
increase recruitment of systemic T lymphocytes to the brain terri-
tory (Lewitus et al., 2008), and their local secretion of cytokines,
such as IL-4 into the CSF (Derecki et al., 2010). Exposure to IL-4
is expected to downregulate secretion of proinflammatory cyto-
kines and upregulate secretion of neurotrophic factors (i.e. IGF-1,
BDNF) by activated microglia (Fig. 2). Moreover, the fact that a pri-
mary exposure to IL-4 improves future resilience to toxic condi-
tions (Butovsky et al., 2005) suggests an immunological
mechanism whereby previous exposures to mildly stressful condi-
tions improve stress resilience (Lewitus and Schwartz, 2009). This
suggested pathway assumes the ability of the stressed parenchyma
to signal to the T-cells residing at its borders (Fig. 2). How might
this occur?

2.1. Redox signaling – the brain parenchyma’s call for help

A successful T cell mediated response requires the combination
of T cell receptor (TCR) activation by specific cognate antigen, to-
gether with activation of costimulatory molecules (the binding of
CD28 on the T lymphocyte to CD80/86 on the antigen presenting
cell) (Jenkins and Johnson, 1993), and a third signal that is medi-
ated by proinflammatory cytokines, and is essential for inducing,
enhancing and prolonging the antigen-specific CD4 T cell response
(Curtsinger et al., 1999). The third signal often depends on the pro-
duction of reactive oxygen species (ROS) at the site of inflamma-
tion (Tse et al., 2007). Such ROS stimulate the generation of
proinflammatory cytokines by APCs, through activation of redox-
sensitive signal transduction pathways such as MAPK, AP-1, and
NFkb (Lander et al., 1995; Suzuki et al., 1997; Rao, 2001; Matsuz-
awa et al., 2005). Accordingly, interfering with the redox balance
by down regulating ROS production by APCs leads to reduced T cell
effector function, as manifested by reduced proliferation and cyto-
kine secretion (Tezel et al., 2007; Tse et al., 2007; Sklavos et al.,
2008). In response to immunization, the ROS-dependent signal is
induced by the adjuvant properties of the CFA, LPS or other micro-
bial products (Pape et al., 1997; Curtsinger et al., 1999). ROS might
also have a direct effect on effector T cells; superoxide and/or phys-
iologically relevant concentrations of hydrogen peroxide were
shown to augment the production of interleukin-2 by T cells stim-
ulated with antigen or mitogen in various experimental systems
(Roth and Droge, 1987; Los et al., 1995). Importantly, exposure of
T lymphocytes to physiological concentrations of environmental
ROS or to other inducers of moderate oxidative stress does not by-
pass the requirement for signaling cascades initiated by specific
cell membrane receptors (TCR, CD3, CD28), though ROS exposure
can amplify signaling cascades after relatively weak receptor stim-
ulation (Hehner et al., 2000). Thus, ROS from the inflammatory
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environment appear to decrease the triggering thresholds of the
antigen receptor-dependent signal cascades. Such redox-mediated
augmentation of the immune response was suggested as a mecha-
nism that allows the initiation of an effective immune response
even before large amounts of antigen have accumulated (Droge,
2002).

Whereas in the rest of the body, antigen presenting cells and T
cells migrate to the site of infection where antigen concentrations
are highest, in the case of the CNS, immune cells that are located at
the ‘‘borders of the CNS’’ must respond to distant events that occur
within the parenchyma. Thus, a mechanism that reduces the
threshold of antigen that is able to initiate a response is crucial.
We suggest that following exposure to mental stress, the activation
of leukocytes residing in the brain borders is facilitated, from afar,
by redox signals emanating from the brain parenchyma due to the
stress-induced neuroinflammatory response (Fig. 2). Accordingly,
in other models of brain pathologies that involve neuroinflamma-
tion, it was demonstrated that parenchymal oxidative stress is re-
flected in the CSF (Montine et al., 1998; Greco et al., 1999). Thus,
behavioral maladaptation and increased susceptibility to mental
illness that result from a deficiency in circulating immune cells
during exposure to psychological stress, might be due to the
skewed cytokine profile at the CNS borders (Derecki et al., 2010),
and to the lack of T-cell derived cytokines such as IL-4 able to
counteract neuroinflammation and restore brain homeostasis
(Fig. 2).

The potential role of circulating immune cells in resetting brain
homeostasis is most probably not restricted to extreme conditions.
Since immune competence is essential for normal brain function at
all times (Brynskikh et al., 2008; Ron-Harel et al., 2008), it is plau-
sible that the CNS and circulating immune cells are engaged in an
ongoing dialogue whereby the immune cells residing at the bor-
ders of the CNS respond to any changes in parenchymal homeosta-
sis that occur as part of normal brain function and that are not
contained locally (Nimmerjahn et al., 2005; Hanisch and Ketten-
mann, 2007). If this is indeed the case, then we would expect to
find evidence of accumulated toxicity in the brains of immune-
deficient mice as a result of life-long events that were not properly
terminated to restore homeostasis. In the following section, we
discuss preliminary findings that support this notion.
2.2. Elevation of detoxification mechanisms in the brains of mice
lacking CNS-specific autoreactive T cells

Our model suggests that chronic immune malfunction will re-
sult in accumulation of toxic factors and the ensuing recruitment
of local detoxification mechanisms to counteract them. In a study
performed in our laboratory to identify activation of such mecha-
nisms, we performed screening by gene array (Affymetrix
MOE430A), comparing hippocampal RNA extract taken from nor-
mal Balb/c mice, and mice lacking T cells recognizing brain anti-
gens on a Balb/c background. The screen identified an elevation
in expression of Glo1 (fold change = 2.6, P < 0.001), the gene encod-
ing Glyoxalase-1, in the brains of the mice bearing a skewed T cell
repertoire. The difference in Glo1 expression was further verified
both on the mRNA level by real-time PCR (Fig. 1a) and on the pro-
tein level, by Western blot analysis (Fig. 1b).

Glyoxalase-1 is part of the Glyoxalase detoxification mecha-
nism, which degrades reactive a-oxoaldehydes that are produced
as part of normal metabolism (Vander Jagt and Hunsaker, 2003)
and as a result of oxidative processes (e.g. lipid peroxidation and
oxidative degradation of glucose), and which are augmented under
increased oxidative stress (Thornalley et al., 1999; Ramasamy
et al., 2005). Normally, Glyoxalase-1 levels in the CNS parenchyma
are enhanced with increased age, as a compensatory mechanism
against increased free radical and carbonyl levels (Sharma-Luthra
and Kale, 1994; Kuhla et al., 2006).

Although the brain parenchyma has the enzymatic capacity to
detoxify reactive compounds, for example, through glutathione
(GSH) (Monks et al., 1999), most of the activity of the detoxifying
machineries occurs at the blood–brain interfaces. These interfaces
include the cerebral capillaries forming the BBB, and the choroid
plexi, which express high levels of detoxifying and metabolizing
enzymes (Emerich et al., 2005). Comparing Glyoxalase-1 expres-
sion in the choroid plexi of T-cell deficient compared to wild-type
mice demonstrated an elevation similar to that found in the hippo-
campus. In support of the ongoing requirement for T cells, reconsti-
tution of the T cell pool reduced Glyoxalase-1 levels to normal
(Fig. 1d). These results provide indirect evidence that conditions
characterized by immune deficiency result in accumulation of tox-
icity in the CNS parenchyma.

In summary, our model suggests that the brain parenchyma and
the leukocytes residing in the borders of the CNS are engaged in a
continuous dialogue. As part of this dialogue, the parenchyma ‘‘in-
forms’’ the leukocytes of its status and its needs through toxic
agents that enter the CSF. In parallel, the leukocytes secrete cyto-
kines that are required to neutralize the toxicity (Fig. 2). If this dia-
logue is interrupted, then local detoxifying mechanisms are
recruited to an extended degree. Such destruction can occur as a
normal part of aging, or prematurely under disease conditions, im-
mune deficiency or stress (Preston, 2001; Redzic et al., 2005; Per-
ez-Gracia et al., 2009; Ron-Harel and Schwartz, 2009).
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